

Technical Data Sheet

ATI 718[™]

Nickel-Base Superalloy

(UNS Designation N07718)

INTRODUCTION

ATI 718[™] alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately 1400°F (760°C) and oxidation resistance to approximately 1800°F (982°C). In addition, the alloy exhibits excellent tensile and impact strength even at cryogenic temperatures.

High strength at room and elevated temperatures is developed by a precipitation heat treatment at 1325°F (718°C) with cooling and a hold at 1150°F (621°C). The relatively slow response to precipitation hardening permits repair welding of the ATI 718™ alloy even in the aged condition.

The ATI 718[™] alloy is usually produced by a double melt practice using consumable electrode remelt procedures to provide homogeneity and extremely clean structures.

FORMS AND CONDITIONS AVAILABLE

The ATI 718[™] alloy is available in plate, sheet and strip and long product forms. The alloy is generally supplied in the solution treated condition.

SPECIFICATIONS

ATI 718[™] alloy is covered by the following specifications:

Product Form	AMS	ASTM	ASME
Sheet, Strip and Plate	5596 5597	B670	
Castings	5583		
Seamless Tube	5589 5590		
Bar, Forgings and Rings	5662 5663 5664	B637	SB-637
Welding Wire	5832		SFA-5.14
Bolting		B1014	

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies.

Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com

Technical Data Sheet

TYPICAL ANALYSIS

EI	ement	Percent
Ca	arbon	0.05
Ma	anganese	0.10
Pł	nosphorus	0.006
Su	llfur	0.001
Sil	licon	0.15
Cł	nromium	18.5
Ni	ckel	53.0
Mo	olybdenum	3.0
Co	olumbium Plus Tantalum	5.1
Tit	anium	1.0
Al	uminum	0.50
Co	obalt	0.30
Bo	oron	0.003
Co	opper	0.05
Irc	n	Balance

A restricted analysis with maximum contents of 0.10 percent cobalt and 0.10 percent tantalum is available for nuclear and other special applications.

Corrosion and Oxidation Resistance

The ATI 718[™] alloy has good resistance to oxidation and corrosion at temperatures in the alloy's useful strength range in atmospheres encountered in jet engines and gas turbine operations.

PHYSICAL PROPERTIES

Typical Values

Density

Annealed Condition	0.296 lb/in ³	8.19 g/cm ³
Aged Condition	0.297 lb/in ³	8.22 g/cm ³

Specific Gravity

Annealed Condition	8.19
Aged Condition	8.22

Linear Coefficient of Thermal Expansion

Temperature Range		Mean Coefficient of Thermal Expansion (Units of 10 °)		
°F °C		/°F	/°C	
	70- 200	21- 93	7.1	12.8
	70- 400	21-204	7.5	13.5
	70- 600	21-316	7.7	13.9
	70- 1000	21-538	8.0	14.4
	70-1200	21-649	8.4	15.1
	70-1400	21-760	8.9	16.0

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2012 ATI. All rights reserved. Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com

ATI 718™

Technical Data Sheet

Thermal Conductivity

Temperature Range		Thermal Conductivity		
F C		Btu-ft/ft ² h- F	W/m•K	
32-212	0-100	6.5	11.2	

Electrical Resistivity at 68 F (20 C)

Annealed	127 microohm-cm	
Aged	121 microohm-cm	

Elastic Modulus, Modulus of Rigidity and Poisson's Ratio

Tempe	rature	Elastic Modulus (E)		Modulus of Ridigity (G)		Poisson's Ratio (μ)
°F	°C	Units of 10º psi	GPa	Units of 10º psi	GPa	
70	21	29.0	200	11.2	77	0.294
200	93	28.4	196	11.0	76	0.288
400	204	27.6	190	10.8	74	0.280
600	316	26.7	184	10.5	72	0.272
800	427	25.8	178	10.1	70	0.271
1000	538	24.8	171	9.7	67	0.271
1200	649	23.7	163	9.2	63	0.283
1400	760	22.3	154	8.5	59	0.306

MECHANICAL PROPERTIES

Room Temperature Properties

The room temperature strength of the ATI 718[™] alloy is substantially increased by precipitation heat treatment as the following data indicate. These values are properties specified for sheet, strip and plate in AMS 5596 and AMS 5597.

Solution Treated

Yield Strength (0.2% Offset)	Ultimate Tensile Strength	Elongation (Percent in 2")	
Sheet and Strip 80,000 psi (max) 550 MPa (max)	140,000 psi (max) 965 MPa (max)	30 (min)	
Plate 105,000 psi (max) 725 MPa (max)	150,000 psi (max) 1,035 MPa (max)	30 (min)	
Solution Treate	d plus Precipitation	Heat Treatment	
Yield Strength (0.2% Offset)	Ultimate Tensile Strength	Elongation (Percent in 2")	
150,000 psi (min) 1,035 MPa (min)	180,000 psi (min) 1,240 MPa (min)	12 (min)	

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2012 ATI. All rights reserved. **ATI 718**™

ATI 718™

Technical Data Sheet

Typical Short Time Tensile Properties as a Function of Temperature

Typical short time tensile properties as a function of temperature are shown here for material solution treated and aged as follows:

Solution Treatment:	1800°F (982°C) 1 hour
Precipitation Treatment:	1325°F (718°C) 8 hours
	Furnace Cool at 100°F (55°C)
	per hour to 1150°F (621°C)
	1150°F (621°C) 8 hours

Temperature		Yield Strength 0.2% Offset		Ultimate Tensile Strength		Elongation
°F	°C	psi	MPa	psi	MPa	Percent in 2"
70	21	174,000	1200	208,000	1435	21
400	204	163,000	1125	198,000	1365	20
800	427	157,000	1080	192,000	1325	19.5
1000	538	154,500	1065	186,000	1280	19
1200	649	148,000	1020	168,000	1160	19
1300	704	137,000	945	145,500	1005	20

Typical creep and stress rupture strengths are shown in figure form.

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2012 ATI. All rights reserved. Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com

ATI 718™

Technical Data Sheet

WELDING

Because of a relatively slow aging reaction rate, welding ATI 718[™] alloy does not present the problems associated with most other high-temperature precipitation hardening alloys. ATI 718[™] alloy may be welded in either the annealed or precipitation hardened condition. Accordingly, the alloy may be repair welded without difficulty.

Inert gas tungsten arc (TIG) welding is recommended using ATI 718[™] alloy weld filler metal or other nickel base superalloy compositions. It does not appear necessary to stress relieve weldments prior to aging.

ATI 718[™] alloy is subject to Laves phase (Fe₂Cb) formation during solidification. This phase reduces the strength and toughness of weldments. This phase is dissolved by a 1900-1950°F (1038-1066°C) solution heat treatment.

Heat Treatment

ATI 718[™] alloy depends for strength on a precipitation hardening reaction involving nickel, columbium, titanium and aluminum, although some solid solution strengthening is derived from its molybdenum content.

The optimum temperature for annealing or solution treating ATI 718[™] alloy is determined by the relative importance of short or long time elevated temperature mechanical properties. If maximum short time yield and tensile strengths are required, the alloy should be solution treated at 1725 to 1825°F (940-995°C) prior to aging; best long time stress rupture or creep properties are obtained by solution treating at 1900 to 1950°F (1038-1066°C) and aging. If excess phases are present in the microstructure, they are more readily dissolved by the higher temperature solution treatment.

The best aging treatment following solution treatment is to hold the alloy at 1325 to 1350°F (718-732°C) for 8 hours, followed by furnace cooling to 1150 to 1200°F (621-649°C), holding for 8 hours and then air cooling. Since cold rolling accelerates the precipitation hardening reaction, cold rolled sheet, if not solution treated after cold reduction, develops optimum strength if aged at 1275°F (691°C) for 16 hours.

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of An Properties, Inc. © 2012 ATI. All rights reserved.

Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com