

Technical Data Sheet

AL-6XN PLUS®

Stainless Steel: Superaustenitic

(UNS N08367)

INTRODUCTION

AL-6XN PLUS[®] alloy is an enhanced version of the standard AL-6XN[®] alloy. Both satisfy the composition requirements of UNS N08367, but the AL-6XN PLUS[®] alloy contains a greater concentration of the alloying elements (Cr, Mo, and N) which promote corrosion resistance.

Resistance to Localized Chloride Attack The relative pitting resistance of a stainless steel can be correlated to alloy composition using the Pitting Resistance Equivalent (PRE_N).

(PRE_N) = %Cr + 3.3 %Mo + 30 %N

Typically the AL-6XN alloy composition would have a PRE_N of about 47. By increasing the Cr, Mo, and N content of the alloy to near the maximum levels per-mitted by specification, the PRE_N can be increased. This is illustrated in the table below:

UNS N08367 Alloy Modification for Increased PRE_N

Element	Typical Composition AL-6XN [®] Alloy	Typical Composition AL-6XN PLUS [®] Alloy
С	0.02	0.02
Mn	0.40	0.30
Р	0.020	0.020
S	<0.001	<0.001
Si	0.40	0.35
Cr	20.5	21.8
Ni	24.0	25.3
Мо	6.2	6.7
N	0.22	0.24
Cu	0.20	0.20
Fe	Balance	Balance
(PRE _N)	47.5	50.0 min.

The PRE_N number is a predictor of potential corrosion resistance, and not a measure of performance. Proper materials processing is required to obtain the maximum corrosion resistance which a given alloy can display. Laboratory data do indicate, however, that the higher alloy content of AL-6XN PLUS[®] alloy does provide increased corrosion resistance. This is shown in the table on the next page:

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. The starburst logo is a registered trademark of ATI Properties, Inc. S 2012 ATI. All rights reserved.

Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com

Technical Data Sheet

Test Method	Test Solution	Test Surface	AL-6XN [®] Alloy	AL-6XN PLUS [®] Alloy
ASTM G48 Practice B	Acifidied Ferric Chloride	Pickled Mill Surface	CCCT = 110°F (43°C)	CCCT = 131°F (55°C)
ASTM G48 Practice C	Acifidied Ferric Chloride	Pickled Mill Surface	CPT = 167°F (75°C)	CPT = 194°F (90°C)
ASTM G48 Practice D	Acifidied Ferric Chloride	Pickled Mill Surface	CCCT = 95°F (35°C)	CCCT = 113°F (45°C)
ASTM G150	1M NaCl	Ground Surface	ECPT = 172°F (78°C)	ECPT = 194°F (90°C)

CCCT = Critical Crevice Corrosion Temperature

CPT = Critical Pitting Temperature

ECPT = Electrochemical Critical Pitting Temperature

MECHANICAL PROPERTIES

AL-6XN PLUS[®] alloy has the same strength and ductility as standard AL-6XN alloy.

Specification Coverage for AL-6XN PLUS[®] Alloy

Because AL-6XN PLUS alloy falls within the composition range of UNS N08367 and exhibits the same mechanical properties, it meets existing specifications for the UNS N08367 alloy. AL-6XN PLUS alloy can be supplied to any of the specifications for which AL-6XN alloy is supplied. These include the following:

Form	ASME	ASTM
Plate, Sheet and Strip	SA-240	A 240
Bars and Shapes		A 479
Rod, Bar and Wire	SB-691	B 691
Welded Pipe	SB-675	A 358, A 409 A 813, A 814 B 675
Seamless and Welded Pipe	SA-312	A 312
Seamless and Welded Tube		A 269, A 270
Welded Tube	SA-249 SB-676	A 249, A 688 B 676
Seamless Pipe and Tube	SB-690	B 690
Billets and Bars for Reforging		B 472
Forged Pipe Flanges Fittings and Valves	SB-462	B 462
Wrought Nickel Alloy Welded Fittings	SB-366	B 366
Nickel Alloy Forgings	SB-564	B 564
Pipe Welded with Filler	SB-804	B 804

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2012 ATI. All rights reserved.

Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com

AL-6XN Plus[®]

Technical Data Sheet

HEAT TREATMENT

The minimum annealing temperature was established for AL-6XN[®] alloy based upon testing of material of compositions representing the upper and lower specification limits of alloy content. This testing showed that short-term heating to 1950°F (1065°C) dissolved sigma phase precipitates in AL-6XN alloy containing 22% Cr and 7% Mo. Since the composition of AL-6XN PLUS alloy is within this limit, the 2025°F (1107°C) minimum annealing treatment commonly specified is more than adequate for this alloy.

AL-6XN PLUS[®] alloy may have slightly higher strength then the conventional AL-6XN alloy, but its formability and weldability are unchanged. The maximum service temperature (800°F) for AL-6XN alloy in pressure vessel service is administratively mandated. The embrittlement processes observed above 1000°F are diffusion controlled, and the minor compositional differences between AL-6XN PLUS alloy and the AL- 6XN alloy will have no influence upon embrittlement susceptibility, etc.

Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of ATI Properties, Inc. or its affiliated companies. The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies. The starburst logo is a registered trademark of ATI Properties, Inc. or its affiliated companies.

Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com