

Development and Ballistic Testing of a New Class of Auto-Tempered High-Hard Steels Under Military Specification MIL-DTL-46100E

by Dwight Showalter, William Gooch, Matthew Burkins, Jonathan Montgomery, and Richard Squillacioti

ARL-TR-4997

September 2009

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
and maintaining the da including suggestions Davis Highway, Suite comply with a collection	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.						
1. REPORT DATE ((DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)		
September 2009	9	Final			February 2008–February 2009		
4. TITLE AND SUB		1			5a. CONTRACT NUMBER		
	nd Ballistic Testin	g of a New Class	of Auto-Tempere	ed High-Hard			
Steels Under M	ilitary Specificati	on MIL-DTL-461	00E		5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
	ter, William Good	h Matthew Burki	ns Ionathan Mo	ntoomery and	1L162618AH80		
Richard Squilla		II, Matthew Durki	ins, jonathan wo	ingomery, and	5e. TASK NUMBER		
Kichard Squilla	cioti				Se. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING O	RGANIZATION NAME	(S) AND ADDRESS(ES	6)		8. PERFORMING ORGANIZATION		
U.S. Army Res	earch Laboratory				REPORT NUMBER		
ATTN: RDRL					ARL-TR-4997		
	ing Ground, MD	21005 5066					
Aberdeen 110vi	ing Oround, MD	21003-3000					
9. SPONSORING/M	IONITORING AGENCY	'NAME(S) AND ADDR	ESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION	AVAILABILITY STATE	EMENT					
Approved for p	ublic release; distr	ibution is unlimite	ed.				
13. SUPPLEMENTA	RY NOTES						
14. ABSTRACT							
	Passarah Laborat	om (ADI) was di	reated to investig	ata variana wav	a to averand automatic staal amoun plata		
					s to expand current steel armor plate		
					tion capacity at U.S. steel facilities for		
					nd the availability of HHA steels under the		
		•			quenched, auto-tempered steels that do not		
use existing water quench and temper facilities. Allegheny Technologies Incorporated (ATI) developed an auto-tempered steel							
alloy, ATI 500-MIL (trademark of ATI Properties, Inc.), that has physical and mechanical properties that meet the current HHA							
specification. ARL procured sufficient amounts of ATI 500-MIL plate to allow acceptance testing and subsequent certification							
of ATI 500-MIL plate as complying with the First Article requirements of the newly revised MIL-DTL-46100E specification.							
This report documents the development of ATI 500-MIL plate and subsequent ballistic testing and inclusion into the							
	Class-2 auto-temp						
15. SUBJECT TERM							
	auto-tempered, ar	mor, ballistic testi	ng				
16. SECURITY CLA	SSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Dwight Showalter		
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (Include area code)		
Unclassified	Unclassified	Unclassified	UU	36	(410) 278-7308		

Contents

-

Lis	st of Figures	iv	
Lis	st of Tables	v	
Ac	knowledgments	vi	
1.	Introduction	1	
2.	Allegheny Technologies ATI 500-MIL Plate	2	
3.	Experimental Procedure	3	
4.	Test Projectiles	4	
5.	Results and Discussion	5	
6.	Conclusions	8	
Ap	pendix. Shot Data	9	
Dis	Distribution List		

List of Figures

Figure 1. The 0.30-cal. APM2 and 0.50-cal. APM2 test projectiles	4
Figure 2. The 14.5-mm BS41 (top) and B32 test projectiles (bottom)	5
Figure 3. ATI 500-MIL plate thickness vs. V ₅₀ velocity for the 0.30-cal. APM2 at 30° obliquity.	6
Figure 4. ATI 500-MIL plate thickness vs. V ₅₀ velocity for the 0.50-cal. APM2 at 30° obliquity.	6
Figure 5. ATI 500-MIL plate thickness vs. V ₅₀ velocity for the 14.5-mm B32 at 30° obliquity.	7
Figure 6. ATI 500-MIL plate thickness vs. V ₅₀ velocity for the 14.5-mm BS41 at 30° obliquity.	7

List of Tables

Table 1.	Chemical composition of ATI 500-MIL plate	,
Table 2.	Mechanical properties of ATI 500-MIL plate	1
Table 3.	Thickness ranges and corresponding test projectiles for First Article testing4	ļ
Table 4.	Geometries and weights of projectiles utilized in ATI 500-MIL plate testing4	
Table 5.	V ₅₀ plate acceptance results	;

Acknowledgments

The authors would like to acknowledge Andrew Nichols, Larry Martin, Ronald Bailey, and Glenn Swiatek from ATI Defense for their contributions with regard to material composition and production specifications.

1. Introduction

The U.S. armor community is currently engaged in accelerated efforts to deliver lightweight armor technologies that can defeat armor-piercing (AP) projectiles at reduced areal weights that are available across a large industrial base. While many of these programs involve the application of lower-density metals such as aluminum and titanium, the selection of steel alloys is still competitive for many ballistic and structural applications; the ability to fabricate armor components in both commercial and military operational areas with available equipment and personnel is a major advantage of steel solutions. To meet these requirements, the U.S. armor community has increased the availability of quenched and tempered armor steels by updating current steel military specifications, the most important of which has been the updated/revised MIL-DTL-46100E, *Armor Plate, Steel, Wrought, High-Hardness.*¹ This improved specification was necessary to supply the large steel demands for combat operations in Iraq and Afghanistan. This high-hard armor (HHA) specification allows modern, continuous processing technologies to be used efficiently as well as introducing a new class of auto-tempered high-hard steels.

The U.S. Army Research Laboratory (ARL) was directed to investigate various ways to expand current steel armor plate production as the large military demand for armor plate exceeded the current production capacity at U.S. steel facilities for quench and tempered HHA steel armor plate. The solution was to expand the availability of HHA steels under the current military specification to include a new class of air-quenched, auto-tempered steels that do not use existing water quench and temper facilities. Allegheny Technologies Incorporated (ATI) developed an auto-tempered ATI 500-MIL* steel alloy that has physical and mechanical properties that meet the current HHA specification. ARL procured sufficient amounts of ATI 500-MIL plate to allow acceptance testing and subsequent certification of ATI 500-MIL plate as complying with the First Article requirements of the newly revised MIL-DTL-46100E specification.

Currently, the highest-performing U.S.-made steel alloys for AP bullet protection are manufactured to MIL-DTL-46100E HHA with a hardness range of 477-534 Brinell hardness number (BHN) and to MIL-A-46099C Dual Hardness Armor (DHA) that is produced by roll-bonding a 601-712 BHN front plate to a 461-534 BHN back plate.² The roll-bonded DHA steels are complex to produce and have known production limitations. In the near-term, the U.S. Army will be releasing a new ultra high-hard steel specification for plate hardness over 534 BHN that will further expand the hardness range for ballistic applications. The improved ballistic resistance of steel as a function of increasing hardness is well established in the ballistic

¹MIL-DTL-46100E. Armor Plate, Steel, Wrought, High-Hardness 2008.

^{*}ATI 500-MIL is a trademark of ATI Properties, Inc.

²MIL-A-46099C. Armor Plate, Steel, Roll-Bonded, Dual Hardness (0.187 Inches to 0.700 Inches Inclusive) **1987**.

community, particularly by Rapacki et al. in the 15th International Symposium on Ballistics.³ HHA steel increases AP bullet defeat, reduces armor weight, and is less difficult to manufacture than the DHA. This report documents the development of ATI 500-MIL plate and subsequent ballistic testing and inclusion into the specification as Class-2 auto-tempered HHA steel.

2. Allegheny Technologies ATI 500-MIL Plate

In June 2008, ATI announced the successful launch of a new class of HHA specialty steel. This next-generation armor steel, designated ATI 500-MIL, was developed in response to limited American HHA production and limited performance features of materials in this class. ATI 500-MIL alloy is melted, rolled, and finished in America on fully integrated assets owned and operated by ATI. This new material is designed to offer additional features that were not previously available in traditional quench and temper high-hard armor steels. Product design is also geared to obtain improvements in ballistic and blast resistance when compared with other HHA materials. ATI 500-MIL steel plate is designed to meet the requirements in MIL-DTL-46100E while also offering features that address several common challenges frequently encountered with conventional HHA plates.

The composition of ATI 500-MIL alloy includes appreciable amounts of Ni-Cr-Mo, which results in relatively high hardenability and increased toughness compared to other HHA alloys (tables 1 and 2).⁴ As a result, the balanced combination of unique properties and consistent quality allows this alloy to meet the specifications outlined in the MIL-DTL-46100E, which was recently revised to account for these improvements.

ATI 500-MIL armor addresses secondary processing difficulties associated with various operations. Specifically, operations such as forming (cold and hot), cutting or sectioning, and postoperation heat treatments for restorations of ballistic properties were successfully alleviated.

These postprocess improvements are partly due to the fact that the alloy is auto-tempered upon air cooling, thereby eliminating the traditional liquid-quenching and temper treatment. The slower air cooling combined with ATI's proprietary processing results in significantly higher dimensional armor stability.

³Rapacki, E.; Frank, K.; Leavy, B.; Keele, M.; Prifi, J. Armor Steel Hardness Influence on Kinetic Energy Penetration. *Proceedings of the 15th International Symposium on Ballistics*, Jerusalem, Israel, May 1995.

⁴ATI Defense. ATI 500-MIL High Hard Specialty Steel Armor, version 3; ATI Defense Data Sheet, Washington, PA, 3 September 2008.

Table 1. Chemical composition of ATI 500-MIL plate.

Alloy	% C (max)	% Si	% Mn (max)	% P (max)	% S (max)	% Cr (max)	% Ni (max)	% Mo (max)
ATI 500-MIL	0.22-0.32	0.25-0.45	0.80-1.20	0.020	0.005	1.60-2.00	3.50-4.00	0.22-0.37

Table 2. Mechanical properties of ATI 500-MIL plate.

Alloy	Hardness BHN	Charpy-V -40 °C	Yield Strength	Tensile Strength	Elongation
		ft/lb (J)	ksi (MPa)	ksi (MPa)	(%)
ATI 500-MIL	477–534	20 (27)	150 (1034)	260 (1792)	13

Residual stresses in ATI 500-MIL products are also reduced compared to traditional liquidquenched and tempered products. These improvements result in flatter armor products that exhibit minimal distortion during fabrication operations, such as hot or cold cutting. Since the product is auto-tempered, the alloy does not require any special postwelding operations involving liquid quenching and temper to restore ballistic properties.

3. Experimental Procedure

The ballistic performance of ATI 500-MIL steel plates was determined by obtaining the V_{50} ballistic limit for each thickness of plate against the corresponding specified test projectile. The test methodology is described in detail in the MIL-STD-662F.⁵ The V₅₀ ballistic limit is the velocity at which an equal number of fair-impact complete penetration (target is defeated) and partial penetration (target is not defeated) velocities are attained using the up-and-down firing method. Fair impact is defined as occurring when a projectile with an acceptable yaw strikes the target at a distance of at least two projectile diameters from a previously damaged impact area or edge of plate. A complete penetration is determined by placing a 0.5-mm (0.020-in) 2024 T3 aluminum witness plate 152.6 mm (6 in) behind and parallel to the target. If any penetrator or target fragment strikes this witness plate with sufficient energy to create a hole through which light passes, the result is considered a complete penetration. A partial penetration is any impact that is not a complete penetration. For the MIL-DTL-46100E specification, the V₅₀ ballistic limit is defined as the average of six fair impact velocities comprising the three lowest velocities resulting in complete penetration and the three highest velocities resulting in partial penetration. A maximum spread of 45.7 m/s (150 ft/s) shall be permitted between the lowest and highest velocities employed in determining ballistic limits. The data for the ATI 500-MIL steels are compared to the baseline ballistic acceptance data of MIL-DTL-46100E.

⁵MIL-STD-662F. Department of Defense Test Standard **1997**.

4. Test Projectiles

The eight ATI 500-MIL plates tested for First Article certification ranged in thickness (nominal) from 0.1875 in (4.8 mm) up to 1 in (25.4 mm). The corresponding test projectiles and plate obliquities required for each thickness under MIL-DTL-46100E are listed in table 3. The weights and sizes of the projectiles are shown in table 4. These projectiles are shown in figures 1 and 2, with the 14.5-mm BS41 being a tungsten carbide core and the rest hardened steel. In some cases, additional testing was conducted outside this range to allow the data to be graphed. This is noted for the nominal 8-mm (0.315-in) thickness.

Table 3. Thickness ranges and corresponding test projectiles for First Article testing.

Nominal Thickness Range	Obliquity	Test Projectile
in (mm)	(°)	228
0.118 (3.0) to 0.300 (7.62) incl.	30	cal. 0.30 APM2
0.301(7.62) to 0.590 (15.0) incl.	30	cal. 0.50 APM2
0.591 (15.0) to 0.765 (19.4) incl.	30	14.5-mm B32
0.766 (19.4) to 1.130 (28.7) incl.	30	14.5-mm BS41

Table 4. Geometries and weights of projectiles utilized in ATI 500-MIL plate testing.

Projectile		Projectile			Core	
Туре	Length in (mm)	Diameter in (mm)	Weight gr (g)	Length in (mm)	Diameter in (mm)	Weight gr (g)
0.30-cal. APM2	1.39 (35.3)	0.31 (7.85)	166 (10.8)	1.08 (27.4)	0.24 (6.2)	81 (5.3)
0.50-cal. APM2	2.31 (58.7)	0.51 (12.98)	708 (45.9)	1.87 (47.5)	0.43 (10.9)	400 (25.9)
14.5-mm B32	2.61 (66.3)	0.59 (14.86)	990 (64.1)	2.09 (53.1)	0.49 (12.4)	633 (41.0)
14.5-mm BS41	2.07 (52.6)	0.59 (14.94)	975 (63.2)	1.27 (32.3)	0.43 (10.9)	585 (37.9)

Figure 1. The 0.30-cal. APM2 and 0.50-cal. APM2 test projectiles.

Figure 2. The 14.5-mm BS41 (top) and B32 test projectiles (bottom).

5. Results and Discussion

The V_{50} ballistic limits and standard deviation, σ , for each plate thickness were determined experimentally for the ATI 500-MIL plates; the data is shown in table 5 for each test projectile. Figures 3–6 plot the V_{50} velocities vs. the ATI 500-MIL plate thickness as well as the acceptance velocity specification curve for HHA steel (MIL-DTL-46100E). The ballistic advantage of increased alloying can be seen in figures 3–6 where all the plates exceeded the minimum velocity acceptance velocities of the specification. The differences were significant for the thinner plates and approached the acceptance line as the thickness increased. The solid lines of the acceptance curves for MIL-DTL-46100E incorporate approximately two standard deviations reduction below typical performance, which provides an acceptable variance to allow the highhard plate to meet the specification.

Nominal Thickness in (mm)	Projectile	Actual Thickness in (mm)	Obliquity Angle (°)	V ₅₀ ft/s (m/s)	Standard Deviation ft/s (m/s)
0.1875 (4.8)	0.30-cal. APM2	0.202 (5.1)	30	2174 (663)	43 (13)
0.250 (6.35)	0.30-cal. APM2	0.272 (6.9)	30	2688 (819)	36 (11)
0.3125 (7.94)	0.30-cal. APM2	0.305 (7.7)	30	2672 (814)	40 (12)
0.3125 (7.94)	0.50-cal. APM2	0.305 (7.7)	30	2058 (627)	47 (14)
0.375 (9.53)	0.50-cal. APM2	0.381 (9.7)	30	2373 (723)	43 (13)
0.500 (12.70)	0.50-cal. APM2	0.517 (3.1)	30	2582 (787)	56 (17)
0.625 (15.88)	14.5-mm B32	0.614 (15.6)	30	2396 (730)	43 (13)
0.625 (15.88) ^a	14.5-mm B32	0.607 (15.4)	30	2424 (739)	32 (9)
0.750 (19.05)	14.5-mm B32	0.742 (18.8)	30	2760 (841)	43 (13)
1.000 (25.40)	14.5-mm BS41	0.966 (24.5)	30	2851 (869)	56 (17)

Table 5. V₅₀ plate acceptance results.

^a Retest.

Figure 3. ATI 500-MIL plate thickness vs. V₅₀ velocity for the 0.30-cal. APM2 at 30° obliquity.

Figure 4. ATI 500-MIL plate thickness vs. V_{50} velocity for the 0.50-cal. APM2 at 30° obliquity.

Figure 5. ATI 500-MIL plate thickness vs. V₅₀ velocity for the 14.5-mm B32 at 30° obliquity.

Figure 6. ATI 500-MIL plate thickness vs. V_{50} velocity for the 14.5-mm BS41 at 30° obliquity.

The 0.625-in-thick plate that did not meet the velocity requirement for the first ballistic plate was retested in accordance with the procedures in the specification. The second plate passed by 35 ft/s. The effect of the projectile diameter to the plate thickness may be a contributing factor on possible plug formation for this projectile thickness. At 1-in thickness, the ability to harden the plates by air quenching may be reaching a limit, resulting in the V₅₀ velocity approaching the requirement. The armor applications for HHA plates over 0.750 in are limited, and the most important observation is the response of the thinner plates to the ballistic test projectiles. This significant performance is a direct result of the alloying of ATI 500-MIL steel. The first ordered thickness of MIL-DTL-46100E starts at 0.118 in (3 mm); ATI Defense is expected to eventually produce plates between 0.118 and 0.1875 in.

6. Conclusions

This report has documented the ballistic performance of the first Class-2 auto-tempered HHA steel under MIL-DTL-46100E. The increased alloying of ATI 500-MIL steel has resulted in a very tough high hard steel for both blast and ballistic applications. The development and availability of an air-quenched, auto-tempered HHA steel increases the availability of high-hard plate, as traditional water or oil quench and temper facilities are not required. This new class of tough HHA steel plates will increase the metallic armor solutions to armor designers.

Appendix. Shot Data

....

...

-

This appendix appears in its original form, without editorial change.

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	4.8
(in)	0.188
Measured Thick. (in)	0.202
BHN	512
Penetrator:	.30 AP M2
Obliquity:	30
Date:	11-Jan-08

Shot # 6505 6506 6507 6508 6509 6510 6511 6512 6513	Velocity (ft/s) 1954 1985 2079 2137 2131 2129 2160 2166 2242	Velocity (m/s) 596 605 634 652 650 649 659 660 684	Result PP PP CP PP PP CP PP CP	+ +
6514	2209	673	CP	+
Low CP High PP	2137 2166			
V50 Std Dev Vel Spread ZMR	(ft/s) 2174 43 111 29	m/s 663 13 34 9		

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	6.4
(in)	0.250
Measured Thick. (in)	0.272
BHN	532
Penetrator:	.30 AP M2
Obliquity:	30
Date:	15-Jan-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
6523	2352	717	PP	
6524	2472	754	PP	
6525	2593	791	PP	
6526	2635	803	PP -	
6527	2679	817	PP -	
6528	2790	851	CP	
6529	2731	833	CP +	
6530	2720	829	CP +	
6531	2699	823	CP +	
6532	2663	812	PP -	

Low CP High PP	2699 2679	
V50 Std Dev Vel Spread ZMR	(ft/s) 2688 36 96 0	m/s 820 11 29 0

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	7.9
(in)	0.313
Measured Thick. (in)	0.305
BHN	532
Penetrator:	.30 AP M2
Obliquity:	30
Date:	14-Jan-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
6515	2613	797	PP	-
6516	2809	856	CP	
6517	2767	844	CP	
6518	2698	823	PP	-
6519	2718	829	CP	+
6520	2690	820	CP	+
6521	2677	816	CP	+
6522	2633	803	PP	-

Low CP High PP	2677 2698	
	(ft/s)	m/s
V50	2672	815
Std Dev	40	12
Vel Spread	105	32
ZMR	21	6

Plate Type: Nominal Thickness	ATI 500
(mm)	7.9
Nominal Thickness (in)	0.313
Measured Thick. (in)	0.305
BHN	532
Penetrator:	.50 AP M2
Obliquity:	30
Date:	7-May-08

elocity	
m/s) Result	
601 PP	
664 CP	
648 CP	+
630 CP	+
634 CP	+
592 PP	
606 PP	e
619 PP	-
626 PP	-
	m/s) Result 601 PP 664 CP 648 CP 630 CP 634 CP 592 PP 606 PP 619 PP

Low CP High PP	2068 2054	
	(ft/s)	m/s
V50	2058	627
Std Dev	47	14
Vel Spread	138	42
ZMR	0	0

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	9.5
(in)	0.375
Measured Thick. (in)	0.381
BHN	512
Penetrator:	.50 AP M2
Obliquity:	30
Date:	5-Feb-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
6138	2281	695	PP	
6139	2477	755	CP	
6140	2376	724	CP	+
6141	2300	701	PP	-
6142	2413	736	CP	+
6143	2348	716	PP	-
6144	2388	728	PP	-
6145	2413	736	CP	+

Low CP High PP	2376 2388	
V50	(ft/s) 2373	m/s 723
Std Dev	43	13
Vel Spread	113	34
ZMR	12	4

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	12.7
(in)	0.500
Measured Thick. (in)	0.517
BHN	512
Penetrator:	.50 AP M2
Obliquity:	30
Date:	6-Feb-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
6146	2644	806	CP	+
6147	2544	776	CP	+
6148	2497	761	PP	
6149	2525	770	PP	-
6150	2559	780	PP	-
6151	2561	781	PP	-
6152	2659	811	CP	+

Low CP High PP	2544 2561	
V50 Std Dev Vel Spread ZMR	(ft/s) 2582 56 134 17	m/s 787 17 41 5

Plate Type:	ATI 500
Nominal Thickness (mm)	15.9
Nominal Thickness	
(in)	0.625
Measured Thick. (in)	0.514
BHN	
Penetrator:	14.5mmAPIB32
Obliquity:	30
Date:	12-Mar-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
200825854	2355	718	CP	+
200825853	2373	723	PP	-
200825852	2438	743	CP	+
200825851	2400	732	PP	-
200825850	2421	738	CP	+
200825849	2472	754	CP	

Low CP High PP	2355 2400	
V50	(ft/s) 2396	m/s 730
Std Dev	43	13
Vel Spread	83	25
ZMR	45	14

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	15.9
(in)	0.625
Measured Thick. (in)	0.607
BHN	
Penetrator:	14.5mmAPIB32
Obliquity:	30
Date:	24-Mar-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
200825814	2601	793	CP	
200825815	2435	742	CP	+
200825816	2371	723	PP	-
200825817	2409	734	PP	-
200825818	2446	746	CP	+
2008258419	2425	739	PP	-
2008258420	2461	750	CP	+

Low CP High PP	2435 2425	
V50 Std Dev Vel Spread ZMR	(ft/s) 2424 31 90 0	m/s 739 9 27 0

Plate Type:	ATI 500
Nominal Thickness (mm) Nominal Thickness	19.5
(in)	0.750
Measured Thick. (in)	0.742
BHN	
Penetrator:	14.5mmAPIB32
Obliquity:	30
Date:	12-Mar-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
200825861	2810	857	CP	+
200825860	2753	839	PP	-
200825859	2727	831	PP	-
200825858	2796	852	CP	+
200825857	2776	846	CP	+
200825856	2696	822	PP	-

Low CP High PP	2776 2753	
2450	(ft/s)	m/s
V50	2760	841
Std Dev	43	13
Vel Spread	114	35
ZMR	0	0

Plate Type:	ATI 500
Nominal Thickness (mm)	25.4
Nominal Thickness (in)	1.000
Measured Thick. (in)	0.996
BHN	
Penetrator:	14.5mmAPIB32
Obliquity:	30
Date:	13-Mar-08

		Velocity		
Shot #	Velocity (ft/s)	(m/s)	Result	
200825956	2924	891	PP	-
200825957	2924	891	CP	
200825958	2937	895	CP	
200825959	2901	884	CP	
200825960	2901	884	CP	+
200825961	2871	875	CP	+
200825962	2819	859	PP	-
200825963	2798	853	CP	+
200825964	2793	852	PP	-

Low CP High PP	2798 2924	
1/50	(ft/s)	m/s
V50	2851	869
Std Dev	55	17
Vel Spread	131	40
ZMR	126	38