

LA HOJA DE DATOS DE SEGURIDAD

Fecha de revisión 27-ago.-2021

Versión)

1. IDENTIFICACIÓN DE LA SUSTANCIA O EL PREPARADO Y DE LA SOCIEDAD O LA EMPRESA

Identificador del producto

Nombre del producto Niobium and Niobium Alloys

Otros medios de identificación

Código del producto SAC004

Sinónimos Niobio y Aleaciones de Niobio, Derby del Thermite del Niobio (Product #512)

Uso recomendado de la sustancia y restricciones de uso

Uso recomendado Fabricación de productos de aleaciones.

Usos contraindicados

Datos del proveedor o fabricante

Dirección del fabricante

ATI, 1000 Six PPG Place, Pittsburgh, PA

15222 USA

Número de teléfono en caso de

emergencia

Teléfono de emergencia Chemtrec: 1-800-424-9300

2. IDENTIFICACIÓN DE LOS PELIGROS

Clasificación

La Norma de Comunicación de Riesgos de OSHA de 2012 (29 CFR 1910.1200) no considera peligrosa esta sustancia química

Elementos de la etiqueta del SGA

Información general de emergencia

Aspecto Varias formas masivas de Estado físico Sólido Olor Inodoro

producto

Peligros no clasificados en otra parte (Peligros n.e.p.)

No aplicable

Otras informaciones

Cuando el producto se somete a soldadura con soplete, combustión, fusión, aserrado, soldadura fuerte, molienda, rectificado, pulido u otros procesos similares generadores de calor, pueden generarse las siguientes partículas y/o humos en el aire que son potencialmente peligrosos:

El dióxido de titanio, es un carcinógeno del Grupo 2B, IARC.

El pentóxido de vanadio (V2O5) afecta los ojos, la piel y el sistema respiratorio.

Los compuestos solubles de molibdeno como el trióxido de molibdeno pueden provocar irritación pulmonar.

3. COMPOSICIÓN/INFORMACIÓN SOBRE LOS COMPONENTES

Sinónimos

Niobio y Aleaciones de Niobio, Derby del Thermite del Niobio, (Product #512).

Nombre de la sustancia	Número CAS	% en peso
Niobio	7440-03-1	45 - >99
Titanio	7440-32-6	0 - 55
Aluminio	7429-90-5	0 - 50
Tántalo	7440-25-7	0 - 30
Tungsteno	7440-33-7	0 - 30
Hafnio	7440-58-6	0 - 30
Vanadio	7440-62-2	0 - 10
Molibdeno	7439-98-7	0 - 10
Circonio	7440-67-7	0 - 5

4. PRIMEROS AUXILIOS

Primeros auxilios

Contacto con los ojos Si las partículas entran en contacto con los ojos durante el proceso, trátense como si

fueran objetos extraños.

Contacto con la piel Ninguna bajo condiciones normales de uso.

Inhalación Si se inhalan cantidades excesivas de humos, vapores o partículas durante los procesos,

llévese al afectado al aire fresco y consulte a un profesional de salud calificado.

Ingestión No es una vía esperada de exposición.

Principales síntomas y efectos, agudos y retardados

Síntomas No se espera que ocurran.

Indicación de la necesidad de recibir atención médica inmediata y, en su caso, de tratamiento especial

Información para el médico Aplicar un tratamiento sintomático.

5. MEDIDAS CONTRA INCENDIOS

Medios de extinción apropiados

Producto no inflamable en la forma distribuida, inflamable como partículas finamente divididas o piezas resultantes del procesamiento de este producto. Aislar grandes incendios y permitir que se queme. Extinga incendios pequeños, cubriendo con sal (NaCl) o extintor de polvo seco de la clase D.

Medios de extinción no apropiados

No se debe de hacer aspersión de agua en los metales en combustión porque puede ocurrir una explosión. Esta característica de explosividad es causada por el hidrógeno y por el vapor generado por la reacción del agua con el material en combustión.

Peligros específicos del producto químico

Calor intenso. El material muy fino, de gran área superficial proveniente de la molienda, rectificado, pulido o similares procesos con este producto puede inflamarse espontáneamente a temperatura ambiente. ADVERTENCIA: Las partículas finas que se producen por molienda, rectificado, pulido, o procesos similares con este producto puede formar mezclas combustibles de polvo con el aire. Mantener las partículas lejos de fuentes de ignición, incluyendo el calor, chispas y llamas. Evitar la acumulación de polvo para minimizar el peligro debido al polvo combustible.

Productos peligrosos de la combustión

El dióxido de titanio, es un carcinógeno del Grupo 2B, IARC. El pentóxido de vanadio (V2O5) afecta los ojos, la piel y el sistema respiratorio. Los compuestos solubles de molibdeno como el trióxido de molibdeno pueden provocar irritación pulmonar.

<u>Datos de explosión</u> Sensibilidad al impacto mecánico

Ninguno(a).

Página 2/9

América del Norte; Español

Sensibilidad a las descargas

Ninguno(a).

estáticas

Equipo de protección y precauciones para las personas que combaten incendios

El personal de lucha contra incendios debe usar aparato de respiración autónomo y traje completo de protección contra el fuego.

6. MEDIDAS QUE DEBEN TOMARSE EN CASO DE DERRAME ACCIDENTAL O FUGA ACCIDENTAL

Precauciones personales, equipos de protección y procedimientos de emergencia

Precauciones personales Utilizar el equipo de protección individual obligatorio.

Para el personal de respuesta a

emergencias

Utilizar el equipo de protección individual obligatorio.

Precauciones relativas al medio ambiente

Precauciones relativas al medio

ambiente

No aplicable a productos masivos.

Métodos y materiales para la contención y limpieza de derrames o fugas

Métodos de contención No aplicable a productos masivos.

No aplicable a productos masivos. Métodos de limpieza

7. MANEJO Y ALMACENAMIENTO

Precauciones que se deben tomar para garantizar un manejo seguro

Recomendaciones para la manipulación segura

El material muy fino, de gran área superficial proveniente de la molienda, rectificado, pulido o similares procesos con este producto puede inflamarse espontáneamente a temperatura ambiente. ADVERTENCIA: Las partículas finas que se producen por molienda, rectificado, pulido, o procesos similares con este producto puede formar mezclas combustibles de polvo con el aire. Mantener las partículas lejos de fuentes de ignición, incluyendo el calor, chispas y llamas. Evitar la acumulación de polvo para minimizar el peligro debido al polvo combustible.

Condiciones de almacenamiento seguro, incluida cualquier incompatibilidad

Condiciones de almacenamiento

Mantenga los fragmentos, rebabas, polvo y demás partículas pequeñas alejados del calor, las chispas, llamas y demás fuentes de ignición (por ejemplo, luces piloto, motores eléctricos y la electricidad estática).

Materiales incompatibles

Se disuelve en ácido fluorhídrico. Se inflama en presencia de fluor. Cuando se calienta por encima de 200 °C reacciona de forma exotérmica con los siguientes productos. Cloro, bromo, hidrocarburos halogenados, tetracloruro de carbono, tetrafluoruro de carbono y freón.

8. CONTROLES DE EXPOSICIÓN/PROTECCIÓN PERSONAL

Parámetros de control

Nombre de la sustancia	ACGIH TLV	OSHA PEL
Niobio	-	-
7440-03-1		
Titanio	-	-
7440-32-6		
Aluminio	TWA: 1 mg/m³ respirable fraction	TWA: 15 mg/m³ total dust
7429-90-5		TWA: 5 mg/m³ respirable fraction
Tungsteno	STEL: 10 mg/m ³ STEL: 10 mg/m ³ W	(vacated) STEL: 10 mg/m3 (vacated) STEL:
7440-33-7	TWA: 5 mg/m ³ TWA: 5 mg/m ³ W	10 mg/m ³ W

Tántalo 7440-25-7	-	TWA: 5 mg/m ³
Hafnio 7440-58-6	TWA: 0.5 mg/m³ TWA: 0.5 mg/m³ Hf	TWA: 0.5 mg/m ³
Vanadio 7440-62-2	-	Ceiling: 0.5 mg/m³ V2O5 respirable dust Ceiling: 0.1 mg/m³ V2O5 fume
Molibdeno 7439-98-7	TWA: 10 mg/m³ inhalable fraction TWA: 3 mg/m³ respirable fraction	-
Circonio 7440-67-7	STEL: 10 mg/m³ STEL: 10 mg/m³ Zr TWA: 5 mg/m³ TWA: 5 mg/m³ Zr	TWA: 5 mg/m³ Zr (vacated) STEL: 10 mg/m³ (vacated) STEL: 10 mg/m³ Zr

Controles técnicos apropiados

Controles de ingeniería Evitar la generación de partículas no controladas.

Medidas de protección individual, tales como equipos de protección personal

Protección de los ojos/la cara En caso que pudieran estar presentes partículas en el aire, se recomienda una protección

apropiada de los ojos. Por ejemplo, gafas de seguridad bien ajustadas, con forro de

espuma u otro equipo de protección que proteja los ojos de las partículas.

Protección de la piel y el cuerpo La ropa ignífuga / resistente al fuego / retardante puede ser apropiada durante el trabajo en

caliente con el producto. Puede ser necesario el uso de guantes resistentes al corte y/o

ropa de protección cuando están presentes superficies afiladas.

Protección respiratoriaCuando se generan partículas/humos/gases y en caso de sobrepasar los límites de

exposición o si se experimenta irritación, se debe usar la protección respiratoria apropiada. Es posible que se requiera el uso de respiradores de presión positiva con suministro de aire si existe una concentración alta de contaminantes en el aire. La protección respiratoria

debe facilitarse de acuerdo con las reglamentaciones local es vigentes.

Consideraciones generales de

higiene

Manipular de acuerdo con las buenas prácticas de higiene y seguridad industrial.

9. PROPIEDADES FÍSICAS Y QUÍMICAS

Información sobre propiedades físicas y químicas básicas

Estado físico Sólido

Aspecto Varias formas masivas de producto Olor Inodoro Color metálico gris plata Umbral olfativo No aplicable

<u>Propiedad</u> <u>Valores</u> <u>Observaciones • Método</u>

pH - No aplicable

Punto de fusión / punto de 1800-2500 °C / 3270-4530 °F

congelación Punto de ebullición y rango de

ebullición

Punto de inflamación

Punto de inflamación -

Tasa de evaporación - No aplicable

Inflamabilidad (sólido, gas) - Producto no inflamable en la forma distribuida,

inflamable como partículas finamente divididas o piezas resultantes del procesamiento de este

producto

Límite de inflamabilidad en el aire

Límite superior de inflamabilidad: -Límite inferior de inflamabilidad -

Presión de vapor-No aplicableDensidad de vapor-No aplicable

Gravedad específica 5.6-11.9 Solubilidad en agua Insoluble

Solubilidad en otros solventes -

Coeficiente de reparto-No aplicableTemperatura de autoinflamación-No aplicableTemperatura de descomposición-No aplicableViscosidad cinemática-No aplicableViscosidad dinámica-No aplicable

Propiedades explosivasNo aplicablePropiedades comburentesNo aplicable

Otras informaciones

Punto de reblandecimiento -

Peso molecular

Contenido de COV (%) No aplicable

Densidad - Densidad aparente -

10. ESTABILIDAD Y REACTIVIDAD

Reactividad

No aplicable

Estabilidad química

Estable en condiciones normales.

Posibilidad de reacciones peligrosas

Ninguno durante el procesado normal.

Polimerización peligrosa No ocurre polimerización peligrosa.

Condiciones que deben evitarse

Formación de polvo y acumulación de polvo.

Materiales incompatibles

Se disuelve en ácido fluorhídrico. Se inflama en presencia de flúor. Cuando se calienta por encima de 200 °C reacciona de forma exotérmica con los siguientes productos. Cloro, bromo, hidrocarburos halogenados, tetracloruro de carbono, tetrafluoruro de carbono y freón.

Productos de descomposición peligrosos

Cuando el producto se somete a soldadura con soplete, combustión, fusión, aserrado, soldadura fuerte, molienda, rectificado, pulido u otros procesos similares generadores de calor, pueden generarse las siguientes partículas y/o humos en el aire que son potencialmente peligrosos:. El dióxido de titanio, es un carcinógeno del Grupo 2B, IARC. El pentóxido de vanadio (V2O5) afecta los ojos, la piel y el sistema respiratorio. Los compuestos solubles de molibdeno como el trióxido de molibdeno pueden provocar irritación pulmonar.

11. INFORMACIÓN TOXICOLÓGICA

Información sobre posibles vías de exposición

Información del producto

InhalaciónNo se espera que sea una ruta esperada de exposición para el producto en forma masiva.

Contacto con los ojos No se espera que sea una ruta esperada de exposición para el producto en forma masiva.

Contacto con la piel Producto no clasificado.

Ingestión No se espera que sea una ruta esperada de exposición para el producto en forma masiva.

Nombre de la sustancia	DL50, oral	DL50, dérmica -	CL50, inhalación
Niobio	> 10,000 mg/kg bw	> 2000 mg/kg bw	-
7440-03-1			

Titanio 7440-32-6	> 5000 mg/kg bw	-	-
Aluminio 7429-90-5	15,900 mg/kg bw	-	> 1 mg/L
Tungsteno 7440-33-7	> 2000 mg/kg bw	> 2000 mg/kg bw	> 5.4 mg/L
Tántalo 7440-25-7	> 2000 mg/kg bw	> 2000 mg/kg bw	> 5.18 mg/L
Hafnio 7440-58-6	> 5000 mg/kg bw	-	>4.3mg/L
Vanadio 7440-62-2	> 2000 mg/kg bw	-	-
Molibdeno 7439-98-7	> 2000 mg/kg bw	> 2000 mg/kg bw	> 5.10 mg/L
Circonio 7440-67-7	> 5000 mg/kg bw	-	>4.3 mg/L

Información sobre los efectos toxicológicos

Síntomas No se conocen.

Efectos retardados e inmediatos, así como efectos crónicos producidos por una exposición a corto y largo plazo

Toxicidad aguda Producto no clasificado. Corrosión/irritación cutánea Producto no clasificado. Lesiones oculares graves/irritación Producto no clasificado.

ocular

Sensibilización Producto no clasificado. Mutagenicidad en células Producto no clasificado. germinales

Carcinogenicidad

Producto no clasificado.

Toxicidad para la reproducción Producto no clasificado. STOT - exposición única Producto no clasificado. STOT - exposición repetida Producto no clasificado. Peligro de aspiración Producto no clasificado.

12. INFORMACIÓN ECOTOXICOLÓGICA

Ecotoxicidad

Este producto, tal como se suministra, no está clasificado como tóxico para el medio ambiente acuático

Nombre de la sustancia	Algas/plantas acuáticas	Peces	Toxicidad para los microorganismos	Crustáceos
Niobio 7440-03-1	-	-	-	-
Titanio 7440-32-6	The 72 h EC50 of titanium dioxide to Pseudokirchnerella subcapitata was 61 mg of TiO2/L.	The 96 h LC50 of titanium dioxide to Cyprinodon variegatus was greater than 10,000 mg of TiO2/L. The 96 h LC50 of titanium dioxide to Pimephales promelas was greater than 1,000 mg of TiO2/L.	The 3 h EC50 of titanium dioxide for activated sludge were greater than 1000 mg/L.	The 48 h EC50 of titanium dioxide to Daphnia Magna was greater than 1000 mg of TiO2/L.
Aluminio 7429-90-5	The 96-h EC50 values for reduction of biomass of Pseudokirchneriella subcapitata in AAP-Medium at pH 6, 7, and 8 were estimated as 20.1, 5.4, and 150.6 µg/L, respectively, for dissolved Al.	The 96 h LC50 of aluminum to Oncorhynchus mykiss was 7.4 mg of Al/L at pH 6.5 and 14.6 mg of Al/L at pH 7.5		The 48-hr LC50 for Ceriodaphnia dubia exposed to Aluminium chloride increased from 0.72 to greater than 99.6 mg/L with water hardness increasing from 25 to 200 mg/L.

		I_, , , ,	
			The 48 h EC50 of sodium
			tungstate to Daphnia magna
Pseudokirchnerella	greater than 106 mg of W/L.	sludge were greater than	was greater than 96 mg of
subcapitata was 31.0 mg of		1000 mg/L.	W/L.
W/L.			
-	=	-	-
The 72 h EC50 of hafnium	The 96 h LC50 of Hafnium	-	The 48 h EC50 of Hafnium
to Pseudokirchneriella	dioxide in water to Danio		dioxide to Daphnia magna
subcapitata was great than 8	rerio was greater than the		was greater than the
ug of Hf/L (100% saturated	solubility limit of 0.007 mg		solubility limit of 0.007 mg
solution).	Hf/L .		Hf/L.
The 72 h EC50 of vanadium	The 96 h LC50 of vanadium	The 3 h EC50 of sodium	The 48 h EC50 of sodium
pentoxide to Desmodesmus	pentoxide to Pimephales	metavanadate for activated	vanadate to Daphnia magna
subspicatus was 2,907 ug of	promelas was 1,850 ug of	sludge was greater than 100	
V/L.	V/L .	mg/L.	
The 72 h EC50 of sodium	The 96 h LC50 of sodium	The 3 h EC50 of	The 48 h LC50 of sodium
molybdate dihydrate to	molybdate dihydrate to	molybdenum trioxide for	molybdate dihydrate to
Pseudokirchneriella	Pimephales promelas was	activated sludge was 820	Ceriodaphnia dubia was
subcapitata was 362.9 mg of	644.2 mg/L	mg/Ľ.	1,015 mg/L.
Mo/L.	· ·		The 48 h LC50 of sodium
			molybdate dihydrate to
			Daphnia magna was greater
			than 1,727.8 mg/L.
The 14 d NOEC of zirconium	The 96 h LL50 of zirconium	-	The 48 h EC50 of zirconium
dichloride oxide to Chlorella	to Danio rerio was greater		dioxide to Daphnia magna
vulgaris was greater than	than 74.03 mg/L.		was greater than 74.03 mg
102.5 mg of Zr/L.			of Zr/L.
	W/L. The 72 h EC50 of hafnium to Pseudokirchneriella subcapitata was great than 8 ug of Hf/L (100% saturated solution). The 72 h EC50 of vanadium pentoxide to Desmodesmus subspicatus was 2,907 ug of V/L. The 72 h EC50 of sodium molybdate dihydrate to Pseudokirchneriella subcapitata was 362.9 mg of Mo/L. The 14 d NOEC of zirconium dichloride oxide to Chlorella vulgaris was greater than	tungstate to Pseudokirchnerella subcapitata was 31.0 mg of W/L. The 72 h EC50 of hafnium to Pseudokirchneriella subcapitata was great than 8 ug of Hf/L (100% saturated solution). The 72 h EC50 of vanadium pentoxide to Desmodesmus subspicatus was 2,907 ug of V/L. The 72 h EC50 of sodium molybdate dihydrate to Pseudokirchneriella subcapitata was 362.9 mg of Mo/L. The 14 d NOEC of zirconium dichloride oxide to Chlorella vulgaris was greater than 106 mg of W/L. The 96 h LC50 of Hafnium dioxide in water to Danio rerio was greater than 106 mg of W/L. The 96 h LC50 of Hafnium dioxide in water to Danio rerio was greater than 106 mg of W/L. The 96 h LC50 of Hafnium dioxide in water to Danio rerio was greater than 106 mg of W/L.	tungstate to Pseudokirchnerella subcapitata was 31.0 mg of W/L. The 72 h EC50 of hafnium to Pseudokirchneriella subcapitata was great than 8 ug of Hf/L (100% saturated solution). The 72 h EC50 of vanadium pentoxide to Desmodesmus subspicatus was 2,907 ug of V/L. The 72 h EC50 of sodium molybdate dihydrate to Pseudokirchneriella subcapitata was 362.9 mg of Mo/L. The 14 d NOEC of zirconium dichloride oxide to Chlorella vulgaris was greater than 106 mg of W/L. thungstate to Danio rerio was greater than 1000 mg/L. The 96 h LC50 of Hafnium dioxide in water to Danio rerio was greater than the solubility limit of 0.007 mg Hf/L. The 96 h LC50 of vanadium pentoxide to Pimephales promelas was 1,850 ug of V/L. The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 14 d NOEC of zirconium dichloride oxide to Chlorella vulgaris was greater than 106 mg of W/L. The 96 h LC50 of vanadium pentoxide to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 96 h LC50 of sodium molybdate dihydrate to Pimephales promelas was 644.2 mg/L The 14 d NOEC of zirconium to Danio rerio was greater than 100 mg/L.

Persistencia y degradabilidad

Bioacumulación

Otros efectos adversos

13. INFORMACIÓN RELATIVA A LA ELIMINACIÓN DE LOS PRODUCTOS

Métodos de eliminación

Eliminación de residuos La eliminación se debe realizar de acuerdo con las leyes y regulaciones regionales,

nacionales y locales correspondientes.

Embalaje contaminado No se espera que ocurran.

Este producto contiene una o más sustancias listadas por el Estado de California como residuos peligrosos.

14. INFORMACIÓN RELATIVA AL TRANSPORTE

DOT No regulado

15. INFORMACIÓN REGLAMENTARIA

Inventarios Internacionales

TSCA Cumple/Es conforme con
DSL/NDSL Cumple/Es conforme con
EINECS/ELINCS Cumple/Es conforme con
ENCS Cumple/Es conforme con
IECSC Cumple/Es conforme con

KECL Cumple/Es conforme con no listado/no incluido no listado/no incluido no listado/no incluido

de Australia AICS

Leyenda:

TSCA - Estados Unidos - Ley del Control de Sustancias Tóxicas, Sección 8(b), Inventario DSL/NDSL - Lista de Sustancias Nacionales y Lista de Sustancias no Nacionales de Canadá

EINECS/ELINCS - Inventario Europeo de Sustancias Químicas Comercializadas/Lista Europea de Sustancias Químicas Notificadas

ENCS - Sustancias Químicas Existentes y Nuevas de Japón
 IECSC - Inventario de Sustancias Químicas Existentes de China
 KECL - Sustancias Químicas Existentes y Evaluadas de Corea
 PICCS - Inventario de Productos y Sustancias Químicas de Filipinas

AICS - Inventario de Sustancias Químicas de Australia (Australian Inventory of Chemical Substances)

Regulaciones federales de los

EE. UU

SARA 313

Sección 313 del Título III de la Ley de Enmiendas y Reautorización del Superfondo de 1986 (SARA). Este producto no contiene sustancias químicas sujetas a los requisitos de notificación de la Ley y del Título 40 del Código de Regulaciones Federales, Parte 372

Categorías de peligro de SARA

311/312

Peligro agudo para la salud

Peligro crónico para la salud:

No
Peligro de incendio

Peligro de liberación repentina de presión

No
Peligro de reactividad

No

CWA (Ley de Agua Limpia)

Este producto no contiene ninguna sustancia regulada como contaminante de acuerdo con la Ley de Agua Limpia (40 CFR 122.21 y 40 CFR 122.42)

CERCLA

Este material, tal como se suministra, no contiene sustancias reguladas como peligrosas por la Ley de Responsabilidad, Compensación y Recuperación Ambiental (CERCLA) (40 CFR 302) ni la Ley de Enmiendas y Reautorización del Superfondo (SARA) (40 CFR 355). Es posible que existan requisitos de informe específicos a nivel local, regional o estatal relacionados con la liberación de este material

Regulaciones estatales de los

EE. UU

Proposición 65 de California

Este producto no contiene ninguna sustancia química incluida en la Proposición 65

Regulaciones estatales sobre el derecho a saber en los Estados Unidos

Nombre de la sustancia	Nuevo Jersey	Massachusetts	Pensilvania
Titanio	X		
7440-32-6			
Aluminio	X	X	X
7429-90-5			
Tungsteno	X	X	X
7440-33-7			
Tántalo	X	X	X
7440-25-7			
Hafnio	X	X	X

7440-58-6			
Vanadio 7440-62-2	X	X	X
Molibdeno 7439-98-7	X	X	X
Circonio 7440-67-7	X	X	X

Información sobre las etiquetas de la EPA de EE. UU

Número de registro EPA de

No aplicable

plaguicidas

16. OTRAS INFORMACIONES

NFPA Peligros para la salud Inflamabilidad 0 Inestabilidad 0 Propiedades físicas y

químicas -

<u>HMIS</u> Peligros para la salud Inflamabilidad 0 Peligros físicos 0 Protección personal X

Leyenda referida a peligros crónicos *= Peligro crónico para la salud

Fecha de emisión28-may.-2015Fecha de revisión27-ago.-2021

Nota de revisión

Secciones actualizadas: 3

Nota -

La información proporcionada en esta Hoja de Datos de Seguridad del material es correcta, a nuestro leal saber y entender, en la fecha de su publicación. La información fue diseñada únicamente como una guía para la manipulación, el uso, procesado, almacenamiento, eliminación y distribución seguros y no debe considerarse como garantía o especificación de calidad. La información se refiere solo al material específico mencionado y es posible que no sea válida para el material usado en combinación con otros materiales o en otros procesos, salvo que se especifique lo contrario en el texto.

Fin de la Hoja de Datos de Seguridad

Información adicional disponible en:Hojas de datos de seguridad y etiquetas disponibles en ATImetals.com